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1. Introduction

In this work we present a brief introduction to hierarchical bases, and the
important part they play in contemporary finite element calculations. In
particular, we examine their role in a posteriori error estimation, and in the
formulation of iterative methods for solving the large sparse sets of linear
equations arising from finite element discretization.

Our goal is that the development should be largely self-contained, but at
the same time accessible and interesting to a broad range of mathematicians
and engineers. We focus on the simple model problem of a self-adjoint, pos-
itive definite, elliptic equation. For this simple problem, the usefulness of
hierarchical bases is already readily apparent, but we are able to avoid some
of the more complicated technical hurdles that arise in the analysis of more
general situations.

A posteriori error estimates play an important role in two related aspects

* The work of this author was supported by the Office of Naval Research under contract
N00014-89J-1440.
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of finite element calculations. First, such estimates provide the user of a fi-
nite element code with valuable information about the overall accuracy and
reliability of the calculation. Second, since most a posteriori error estim-
ates are computed locally, they also contain significant information about the
distribution of error among individual elements, which can form the basis
of adaptive procedures such as local mesh refinement. Space considerations
prevent us from exploring these two topics in depth, and we will limit our
discussion here to the error estimation procedure itself.

Hierarchical basis iterative methods have enjoyed a fair degree of pop-
ularity as elliptic solvers. These methods are closely related to the classical
multigrid V-cycle and the BPX methods. Hierarchical basis methods typic-
ally have a growth in condition number of order k2, where k is the number
of levels*. This is in contrast to multigrid and BPX methods, where the
generalized condition number is usually bounded independent of the number
of unknowns. Although the rate of convergence is less than optimal, hier-
archical basis methods offer several important advantages. First, classical
multigrid methods require a sequence of subspaces of geometrically increas-
ing dimension, having work estimates per cycle proportional to the number
of unknowns. Such a sequence is sometimes difficult to achieve if adaptive
local mesh refinement is used. Hierarchical basis methods, on the other hand,
require work per cycle proportional to the number of unknowns for any distri-
bution of unknowns among levels. Second, the analysis of classical multigrid
methods often relies on global properties of the mesh and solution (e.g. quasi-
uniformity of the meshes, 7i2 regularity of the solution), whereas analysis of
hierarchical basis methods relies mainly on local properties of the mesh (e.g.
shape regularity of the triangulation). This yields a method which is very
robust over a broad range of problems.

Our analysis of a posteriori error estimates and hierarchical basis iterative
methods is based on so-called strengthened Cauchy-Schwartz inequalities.
The basic inequality for two levels, along with some other important prop-
erties of the hierarchical basis decomposition, is presented in Section 3. In
Section 4 we use these results to analyse a posteriori error estimates, while
in Section 5 we analyse basic two-level iterative methods. In Section 6, we
develop a suite of strengthened Cauchy-Schwartz inequalities for fc-level hier-
archical decompositions, which are then used in Section 7 to analyse multi-
level hierarchical basis iterations.

Notation is often a matter of personal preference and provokes considerable
debate. We have chosen to use a mixture of the function space notation typical
in the mathematical analysis of finite element methods, and matrix-vector
notation, which is often most useful when considering questions of practical

* This result is for two space dimensions. For three space dimensions the growth is much
faster, like N1^3, where N is the number of unknowns.
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implementation. We switch freely and frequently between these two types
of notation, using that which we believe affords the clearest statement of a
particular result. Some important results are presented using both types of
notation.

2. Preliminaries

For background on finite element discretizations, we refer the reader to Aziz
and Babuska (1972), Brenner and Scott (1994), and Ciarlet (1980). For
simplicity, we will consider the solution of the self-adjoint elliptic partial dif-
ferential equation

- V(aVit) + bit = / (2.1)

in a polygonal region fi C R2, with the homogeneous Neumann boundary
conditions

V u - n = 0 (2.2)

on <9f2, where n is the outward pointing unit normal. Most of our results
apply with small modification to the case of Dirichlet boundary conditions
u = 0 on dQ. We assume that a(x), b(x) are smooth functions satisfying
0 < a < a(x) < a and 0 < b < b(x) < b for x € f2. The requirement that
b > 0 rather than b > 0 is mainly for convenience.

The £2(Q) inner product (•, •) is defined by

(it, v) = uv dx
Jn

and the corresponding norm

||«||2 = (it, it) = / u2 dx.
Jn

Let 7i = H.1^) denote the usual Sobolev space equipped with the norm

|2 = | |Vd|2 + ||u||2 = / IViil2 +
Jsn

dx,

where | • | denotes the Euclidean norm on M2. The energy inner product a(-, •)
is defined by

a( i t ,v)= / aVit*Vi; + buv dx, (2.3)
JO.

for u, v G 7i. For it € 7i, we define the energy norm | i t | by

|u|||2 = a(u,u).

This norm is comparable to the H1 norm in the sense that there exist positive
constants c\ and C2, depending on a and b, such that

ci|H||<Hi<c2fl|i4
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The weak form of the elliptic boundary value problem (2.1)-(2.2) is as
follows: find u G 7i such that

a(u,v) = (f,v) (2.4)

for all v EH.
Let T be a triangulation of the region Q. While the results presented

here do not depend on the uniformity or quasiuniformity of the triangulation,
many of the constants depend on the shape regularity of the mesh. Let /ij
denote the diameter of triangle i 6 T, and let dt denote the diameter of the
inscribed circle for t. We assume there exists a positive constant So such that

M o < <k (2.5)

for all t £ T. Later, when we consider sequences or families of triangula-
tions, the constant 6o will be assumed to be uniform over all triangulations
considered. While a shape regularity condition like (2.5) does not imply a
globally quasiuniform triangulation, it does imply a local quasiuniformity for
the mesh.

Many of the constants in our estimates depend only on the local variation
of the functions a and b; thus we define

maxxeta(x) , o m a x I 0 b(x)
ao = max —: —— and po = maxteT mmxeta(x) teT minxetb(x)

The fact that our estimates have only a local dependence on the coefficients
can be very important in practice. For example, suppose a is piecewise
constant, varying by orders of magnitude over the region £1. If the jumps
in a are aligned with edges of the triangulation, then our estimates will be
independent of a (CZQ = 1), irrespective of the magnitudes of the jumps.

Let Ai be an iV-dimensional finite element subspace of Ti, consisting of
continuous piecewise polynomials with respect to the triangulation T. We
will be more specific about requirements for M later. The finite element
approximation u^ G M. satisfies

a(uh,v) = (f,v) (2.6)

for all v € M. From (2.4) and (2.6), it is easy to see that the finite element
solution is the best approximation of u with respect to the energy norm

| | u -u / i | = inf J u - v J .
veM

Let 4>i 1 < i < N be a basis for M. Then (2.6) can be transformed to the
linear system of equations

AU = F (2.7)
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where
N

Aij = a((/>j,<t>i), Fi = (/ , fc), and uh =

The matrix A is typically large, sparse, symmetric, and positive definite.
We note that

|| i|2 _ t A _ 2

IFIU = x Jix —
where

N

Thus the .A-norm of a vector in RN is equivalent to the energy norm of the
corresponding finite element function.

At the computational level, many aspects of implementation of the finite ele-
ment method are carried out on an elementwise basis. For example, the stiff-
ness matrix A is typically computed as the sum of element stiffness matrices,
in which integration is restricted to a single element t G T. The element
stiffness matrix is usually computed by first mapping t to a fixed reference
element tr, and then computing the relevant integrals on the reference ele-
ment. Because such mappings play an important role in our analysis, we
begin by considering them in some detail.

Let S denote the set of triangles t satisfying ht = 1, So < dt/ht and one
vertex at the origin. Roughly speaking, the set S characterizes all shape
regular triangles of diameter one. We will denote a particular triangle tr G S
as the reference triangle. The reference triangle tr can be mapped to any other
triangle t G S using a simple linear transformation (which can be represented
as a 2 x 2 matrix). Shape regularity of the triangles in S implies that such
transformations are well conditioned, with condition numbers depending only
on the constant So.

Let A denote the set of linear transformations mapping the reference tri-
angle tr to t G S. Since the triangles in the triangulation T are all shape
regular, any triangle t E T can be generated by a simple scaling and trans-
lation of an element t G <S. Thus the reference element tr can be mapped to
t using a linear transformation from the set A followed by a simple scaling
and translation.

We now suppose that the finite element space M has the direct sum hier-
archical decomposition A4 = V © W. Thus for u G M we have the unique
decomposition u = v + w, where v € V and w G W. Let Vt and Wt denote
the restrictions of V and W to each triangle t G T, and write Ut = Vt + Wt-
Often, Vt and W* will be polynomial spaces (as opposed to piecewise poly-
nomial spaces), being restricted to a single element. Let Vr and Wr denote
reference spaces of polynomials defined with respect to the reference triangle
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tr. We require that the finite element space M = V© W satisfy the following
assumptions for all t € 7":

A l . If Ut = c is constant then i«t = 0 and vt = c.

A2. The mapping from i r to t, consisting of a linear mapping from A followed
by simple scaling and translation, induces maps from Vr onto Vt and Wr

onto Wj.

These conditions are very weak and are satisfied by many common finite
element spaces, although sometimes with a nonstandard choice of basis func-
tions. For example, consider the spaces of continuous piecewise polynomials
of degree p > 1. For this choice, we let V be the space of continuous piecewise
linear polynomials and W be the space of piecewise polynomials of degree p
which are zero at the vertices of the triangulation 7". A basis for V is just the
usual nodal basis for the space of continuous piecewise linear polynomials.
A basis for W consists of all the nodal basis functions for the continuous
piecewise polynomials of degree p except those associated with the triangle
vertices. For example, for p = 2, W consists of the span of the quadratic
'bump functions' associated with edge midpoints in the triangulation. This
is called the hierarchical basis for the piecewise quadratic polynomial space,
in contrast to the usual nodal basis, and is often employed in practice in
the p-version of the finite element method. It is typically the case that the
dimension of the space W is larger than that of V. In this example, the space
V has a dimension of approximately N/p2, or about dimA4/4 for the case
p = 2, and an increasingly smaller fraction as p increases.

We now consider a decomposition of the form M = V © W for the case
of continuous piecewise linear polynomials. In this case, we imagine that
the triangulation T = Tf, which we will call the fine grid, arose from the
refinement of a coarse grid triangulation Tc. For example, we can consider
the case of uniform refinement, in which each triangle t € Tc is refined into
four similar triangles in T by pairwise connecting the midpoints of the edges
of t. In this case the space V = A4C is just the space of continuous piecewise
linear polynomials associated with the coarse mesh, while W consists of the
span of the fine grid nodal basis functions associated with vertices in T which
are not in Tc. If uniform refinement is used, then the space V has a dimension
of approximately 7V/4 while the dimension of W will be approximately 3N/4.
For iterative methods, it is important in practice that the dimension of the
space V be as small as conveniently possible. In this vein, we note that the
hierarchical decomposition of M. can be recursively applied to the space V,
assuming that Tc arose from the refinement of an even coarser triangulation.
This anticipates the fc-level iterations discussed in later sections.

Let M = V © W. Let dim V = Nv and dim W = Nw = N - Nv, and
let {</>j}jĴ  be a basis for V and {4>i}% +i be a basis for W. This induces a



HIERARCHICAL BASES AND THE FINITE ELEMENT METHOD

natural block 2 x 2 partitioning of the linear system of (2.7) as

An A12]\Ui
A22 j L u2 J - L F2 J (2-8)

where An is of order JVy, and A22 is of order
We note that if the vector U 6 RN corresponds to the finite element function

u = v + w € M., then

U\AnUx = \vf, UlA22U2 = \\wf, and U{Al2U2 = a(v,w)-

3. Fundamental two-level estimates

In this section we develop some of the mathematical properties of the hier-
archical basis. Chief among these properties is the so-called strengthened
Cauchy inequality. One interesting feature of this strengthened Cauchy in-
equality is that it is a local property of the hierarchical basis: that is, it is
true for the hierarchical decomposition corresponding to individual elements
in the mesh as well as on the space as a whole. As a result, the constant in
the strengthened Cauchy inequality does not depend strongly on such things
as global regularity of solutions, the shape of the domain, quasiuniformity of
the mesh, global variation of coefficient functions, and other properties that
typically appear in the mathematical analysis of finite element methods. By
the same reasoning, it is not surprising that the constant in the strengthened
Cauchy inequality does depend on local properties like the shape regularity
of the elements.

Our analysis of the strengthened Cauchy inequality in this section is taken
from Bank and Dupont (1980), but see also Eijkhout and Vassilevski (1991).
We begin our analysis with a preliminary technical lemma.

Lemma 1 Let (•, •) and (•, •) denote two inner products defined on a vector
space X. Let || • || and | • | denote the corresponding norms. Suppose that
there exist positive constants A and A such that

0 < A < ^ 4 < A, (3.1)
(z,z)

for all nonzero z £ X. For any nonzero x, y G X, let

( 3 = ^ and 7 = | ^ . (3.2)

Then

l - / 3 2 > K ; - 2 ( l - 7 2 ) (3.3)

where K. = A/A.
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Proof. Lemma 1 states that if two inner products give rise to norms that are
comparable as in (3.1), then the angles measured by those inner products must
also be comparable. Without loss of generality, we can assume |x| = \y\ = 1.
Then from (3.1), we have

I-/?2 = (!

+
y X

]xl\
y

I

4||x||4

A2

4||x||4

\\x + ey\\2\\x-ey\\
2

\x + ey\2\x-6y\2,

where 9 = \\x

we have

Since

\x ± 6y\2 = 1 + 62 ± 26*7,

>
\2a2

> Mid-72)7*

= = 2(!-72)

> /C-2(l-72)-

D

We now state the main Lemma of this section, the strengthened Cauchy
inequality.

Lemma 2 Let M. = V©W satisfy the assumptions Al and A2 above. Then
there exists a number 7 = 7(00, (3Q, 6Q, Vr,Wr) £ [0,1), such that

\a(v,w)\ <7lMIM (3.4)

for all v G V and all w G W.

Proof. This proof is done in detail, as many later proofs follow a similar
pattern. The first step is to reduce (3.4) to an element-by-element estimate.
In particular, suppose that for each t £ T,

(3.5)

where

\a(v,w)t\ < 7t IIIu III* Ilk III*.

a(v, w)t = / aS/v^w + bvw dx
Jt
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is the restriction of a(-, •) to t: and ||| • ||t is the corresponding norm. Then

a(v,w)\ =

< 2.
t

< 7

= 7l

1/2 1/2

El \w\\

7 = max 7*

where

Thus, if we can show (3.5), then (3.4) follows.
To prove (3.5), we derive the pair of inequalities

a{v,w)iit\ < 7i, 11 v 1 i>t | H I I

\a(v,w)o,t

where

a(v,w)it = / aVf*Vw dx, a(v,w)ot = bvw dx,
Jt ' Jt

(3.6)

(3.7)

and I • | j t , i = 0,1, are the corresponding seminorms. If (3.6)-(3.7) hold,
then for

= max(7o,t,7i,t),

we have

a(v,w)t =

+

We now restrict attention to (3.6); the proof of (3.7) follows a similar
pattern. We note that ||| • | i4 defines a strong norm of Wt, but only a seminorm
on Vt, since Vt contains the constant function, and |||c||it = 0 for any constant
c. It is sufficient to show (3.6) only for the subspace Vf = {v G Vt| Jt v dx —
0}, whose elements have average value zero. For any v € Vt let c = Jt v dx,
and note v — c € Vf. Then

a(v, w)itt = a(v — c, w)itt and a(f, v)itt = a{y — c, v — c)ij
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for any w G Wt- Thus we need show (3.6) only for v G Vt and w € Wt and
note that ||| • l^t is a strong norm on the space Vt ® Wt-

A simple homogeneity argument now shows that 71^ does not depend on
the size of the element ht. Making the change of variable

where

1
Xo

Jt

is any vertex

h dx <

oft,

= 7i,t

X

(3.6)

X - X 0

ht

becomes

Vv\2 dx j
1/2 1/2

(3.8)

where t G <S is the image of t under the change of variables, v(x) = v(x),
w(x) = w(x), and d(x) = a{x). In view of (3.8), we can restrict our attention
to the set of triangles <S, the set of linear mappings A, and the reference
spaces Vr and Wr.

Let J £ Abe the linear mapping that takes the reference triangle tr to i.
Then we have

= |det J\ [ a(J"*Vi))*(J^Vu;) dx. (3.9)
Jtr

dx = | \ [
Jtr

The right-hand side of (3.9) defines an inner product on the reference triangle
tr. A second inner product is given by the right-hand side of (3.9) with d = 1
and J = I

(v, w) = / VvtjVw dx.
Jtr

Since i € S, there is a positive constant C = C(SQ) such that, for all
Z G Vr © Wr,

_ „-! . ldet

Here at < a < at for x G t, and Vr = Iv G Vr| / t r u dx = o | . Lemma 1 now
tells us that angles measured by these two inner products are comparable.

The last step of the proof is to note that for v G Vr and w G Wr, there
exists j r = 7r(Vr, Wr), 0 < 7r < 1 for which

/ V«'Vw dx < 7 r ( / |Vv | 2 dx j ( / \\7w\2 dx\ . (3.11)

Estimate (3.11) is true because Vr and Wr are linearly independent sub-
spaces, so there must be a nonzero angle between them. Through the use
of Lemma 1, it follows that 0 < 71^(00, 8Q, Vr, Wr) < 1. The estimate
0 < 7o,t(A)> $0, Vr, Wr) < 1 follows by similar reasoning, except that the
reduction to Vt is unnecessary. •
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Analysis of methods employing hierarchical bases is often framed in terms
of bounds of certain interpolation operators between fine and coarse spaces.
See for example Borneman and Yserentant (1993), Bramble (1993) Oswald
(1994), Xu (1989) and (1992), and Yserentant (1992). In the present context,
the fine space is M. while the coarse space is V. The following lemma shows
that this approach is entirely equivalent to the use of strengthened Cauchy
inequalities.

Lemma 3 Suppose M. = V©W, and let T denote the interpolation operator
denned as follows: ifu = v + w£A4,v£V, and w E W, then I(u) = v.
Then

if and only if

for 7 < 1 and

Proof. First,

Therefore

for all v ev
we assume

. Then

III2

a(v, u

and w

')I<7||«
€ W.

1 Ihll

(3.13) in order to prove

= a(v

= INI
> \\v\\

> ( 1 -

+ 10, V +
2 + Ilk III2
2 + Ilkil2

-7 2 ) IHI 2

to)

+ 2a(v,

- 27|||t;

(3.12). Let u

w)

1 l«l

(3.

(3.

12)

13)

Now we assume (3.12) to show (3.13). It suffices to take |w| = |u;|| = 1.
Then, from (3.12)

i\v-w\l>±\iv\i = ±.

Thus,

a(v,w) = - (lu||2 + fwf - \\v - wf) < 1 -

D

The last result in this section is related to the space W. The functions in
W are necessarily quite oscillatory, since by assumption V contains local con-
stants. Indeed, typically V contains the larger space of local linear functions,
although it has not been necessary to assume this. The solution of equations
using the space W should be quite simple, because on such an oscillatory
space, an elliptic differential operator behaves very much like a large multiple
of the identity.
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To make this more precise, suppose that there is a basis for the reference
space Wr whose elements are mapped onto the computational basis functions
{4>j}jll for Wt by the affine mapping of tr onto t. This is a very natural
assumption for the case of nodal finite elements, and is typically exploited
in practical computations in algorithms for the assembly of the stiffness mat-
rix and the right-hand side. With this additional assumption, we have the
following lemma.

Lemma 4 Suppose {<t>j};^i is the basis for W and let

w = ^2wj(/)j(x,y).
3=1

Then there exist finite positive constants \x and p,, depending only on c*o, 00,
and So, such that

Proof. The proof follows the pattern of Lemma 2, so we will provide only a
short sketch here. One first shows it is sufficient to prove

r

II H i * < ^2w]\l<f>j\lt < fit III H I ? ,
and set // = mint ji and p, = maxj Jif (We have been a bit sloppy in our use
of subscripts on Wj and <pj in order to avoid more complicated notation.) We
then reduce this to showing the pair of inequalities

and

with jj,t = mm{t±ot,/j,lt} and p,t = max{/xo,t,Ml,t}-

A change of variable as in (3.8), mapping i € T to an element t G 5, proves
that // and /i are independent of ht- Finally, changing variables as in (3.9)
and using equivalence of norms as in (3.10)—(3.11) yields the result. •

We now apply Lemmas 2 and 4 to several finite element spaces having
hierarchical decompositions. Much of our analysis of these examples comes
from the work of Maitre and Musy (1982); see also Braess (1981). In these
examples, we will compute the constants 71^, /i, ,, and p,\t for the case a = 1,
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illustrating the effect of shape regularity on the estimates. Let t b e a triangle
with vertices z/j, edges 6j, and angles 9i, 1 < i < 3.

«3 VI

Fig. 1. Quadratic element (left) and piecewise linear element (right).

In our first example, we consider the space of continuous piecewise quad-
ratic finite elements, illustrated on the left in Figure 1. Let (pi 1 < i < 3
denote the linear basis functions for t. Then Vt = ((pi)^—i- The space Wt is
composed of the quadratic bump functions Wt = (^i)f=ii where tpi = 4(pj(pk,
and (i,j, k) is a cyclic permutation of (1, 2,3).

In the second example, we consider the space of continuous piecewise linear
polynomials on a refined mesh, illustrated in Figure 1 on the right. Here Vt
contains the linear polynomials on the coarse mesh element t; Vt = (<fo)f=i,
with <pi defined as in the first example. The space Wt contains the continuous
piecewise polynomials on the fine grid that are zero at the vertices of t. Thus
Wt = (4>i)%=i, where (pi is the standard nodal piecewise linear basis function
associated with the midpoint of edge e, of triangle t.

By direct computation, we establish the relation

1 1
= — cot 9i = —Li.

2 2

Let

A =
+ L3 - L 3

-L3 L3 + L
-Li —L\

-Li

and

D = 0
0

0
L2

0

0
0

(3.15)

(3.16)

Then the element stiffness matrix for the quadratic hierarchical basis can
be shown to be

A/2 -2A/3
-2A/3 4(A + £»)/3

(3.17)
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We know that

7i,t = max{a(v,w) : | v | = |u;||| = 1}

= max{2x*^y/3 : xtAx = 2, y*(A + D)y = 3/4}.

Standard algebraic manipulations yield

2

7l,t = g ( l ^ ^min),

where Am;n is the smallest eigenvalue of the generalized eigenvalue problem

Dx = \(A + D)x. (3.18)

By direct computation and the use of various trigonometric identities, in
particular L1L2 + L2L3 + L3L1 = 1, we can compute

det{£> - X(A + D)} = 2(p - s)A3 + 3(s - p)A2 - sA + p = 0,

where

p = L1L2L3,

s = L\ + I/2 + L3.

The corresponding eigenvalues are A = 1 and A = (1 ± \/4c — 3)/4, where

c = cos2 #1 + cos2 62 + cos2 #3,

and
p 1 — c

s 3 — c

Thus
9 3 + V4C-3

7i,t = ^ • (3-19)

For the second example, the element stiffness matrix for the piecewise linear
hierarchical basis is given by

We see that repeating the arguments for the first example leads to the same
values for 71^ but scaled by \/3/2, that is

ll = 3 + V f ^ - (3.21)
We now turn to the bounds for \i and p, of Lemma 4. These may be

expressed in terms of the largest and smallest eigenvalues in the generalized
eigenvalue problem

(A + D)x = sXx, (3.22)
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so that

det{,4 + D- s\I} = s3(l - A)3 - s(s2 - 2)(1 - A) - 2p = 0.

One can easily write down the analytic solutions of this cubic equation in
terms of p and s, but there is no major simplification as in the case of 71^.
The bounds for the case of the piecewise linear hierarchical basis are given
by /x = Am;n and p,\:t = Amax. Those for the quadratic case are a simple
scaling by 4/3; / / ^ = 4Amin/3 and p,1>t = 4Amax/3.

Fig. 2. The contour map for 71)t (left) and for /x t/Mi,t (right).

In Figure 2, we have plotted 71 )t and the ratio Kt
1 = fi JfJ-i,t a s a function

of 0 < 0i < 7r and 0 < 02 < 7T - 0i, with 03 = ir - 0X - 02. For the case of
quadratic elements, the smallest value 71^ = l / \ /2 occurs for an equilateral
triangle, while the largest value 71 )t = 1 occurs for the degenerate cases
0j = 8j = 0, 6k = 7T. For the case of piecewise linear elements, one should
scale all values of 71^ by v3/2; for this case 714 < 1, even in the degenerate
cases.

It is the ratio K = p,//J. that plays a central role in our later analysis.
However, we plot the reciprocal to confine the ratio to the interval [0,1]. Here
the largest value occurs again for the equilateral triangle, where K~[ — 1/4,
while Kt = 0 whenever 0j = 0, 1 < i < 3. A special case occurs in the
corners of the domain where the function K^ is discontinuous. For example,
if one approaches the origin along the edge 0i = 0, then the limiting cubic
equation is (1 — A)3 — (l — A) = 0, with a corresponding K^ = 0. However,
if we approach along, say, the line 6\ = $2 = 6, then the limiting cubic is
(2/3 - A)(A2 - 7A/3 + 4/9) = 0, and KJ~] = (7 - \/33)/(7 + >/33) > 0.
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4. A posteriori error estimates

A posteriori error estimates are now widely used in the solution of partial
differential equations. A recent survey of the field is given by Verfurth (1995),
which contains a good bibliography on the subject. See also Ainsworth and
Oden (1992 and 1993), Babuska and Gui (1986), Babuska and Rheinboldt
(1978a) and (1978b), Bank and Weiser (1985), Weiser (1981), Zienkiewicz
et al. (1982), and the book edited by Babuska et al. (1986). Our discussion
here is motivated by Bank and Smith (1993).

A posteriori error estimates provide useful indications of the accuracy of a
calculation and also provide the basis of adaptive local mesh refinement or
local order refinement schemes. For example, if one has solved a problem for
a given order p, corresponding to a finite element space M, one can enrich
the space to, say, order p -f 1 by adding certain hierarchical basis functions
to the set of basis functions already used for A4. If M is the new space, then
we have the hierarchical decomposition

where W is the subspace spanned by the additional basis functions.
If we resolve the problem with the space M using the hierarchical basis,

one expects intuitively that the component of the new solution lying in M will
change very little from the previous calculation. Therefore, the component
lying in W should be a good approximation to the error for the solution on
the original space M..

In fact, for our error estimate, we simply solve an (approximate) problem
in the space W rather than M to estimate the error. Let u^ £ M be the
finite element solution on the enriched space satisfying

a(uh,v) = (f,v) (4.1)

for all v € AA, and

||ju — tZftJII = inf. \\u — v\\. (4.2)
veM

Although we don't explicitly compute Uh, it enters into our theoretical
analysis of the a posteriori error estimate for u — Uh- In particular, we assume
that the approximate solutions u^ converge to u more rapidly than Uh- This
is expressed in terms of the saturation assumption

\lu-uhi\<p\iu-uhl (4.3)

where /? < 1 independent of h. (We note that since M. C A4, (3 < 1 is insured
by the best approximation property.) In a typical situation, due to the higher
degree of approximation for the space A4, one can anticipate that f3 = O(hr),
for some r > 0. In this case, /3 —> 0 as h —> 0, which is stronger than required
by our theorems.
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We seek to approximate the error u — Uh in the space W. Our first a
posteriori error estimator e/> £ W is denned by

a(eh,v) = (f,v)-a(uh,v) (4.4)

for all v <EW.
To express this using matrix notation, we consider the linear system of

equations corresponding to (4.1), expressed in terms of the hierarchical basis

An Ai2 1 f Ux

The vector (Ul,U2) corresponds to the function Uh = v + w £ Ai expanded
in terms of the hierarchical basis, with U\ corresponding to v € A1 and
f/2 corresponding to w € W. In this notation, the linear system solved to
compute Uh € At is given by AnC/i = F\. If we combine this with the linear
system for e/j corresponding to (4.4), we have

A n 0 1 f Ux 1 = f F1
A 2 l A22 \ [ E2 \ [ F2

for
for

for

for

for

all
all

all

all

all

V

V

V

V

V

£

£

£

£

£

M,
M,
M,
w,

(4.7)
(4.8)

(4.9)

(4.10)

(4.11)

(4.6)

where the vector E2 corresponds to e^ £ W.
We begin our analysis by noting the orthogonality relations

a(u — Uh,v) = 0

a(u — Uh,v) = 0

a(uh — Uh,v) = 0

a(u — Uh — eh,v) = 0

a(uh-uh-eh,v) = 0

Equations (4.7)-(4.11) are proved using various combinations of (2.4),
(2.6), (4.1), and (4.4), restricted to the indicated subspaces. We can use
the orthogonality relationships (4.7)-(4.9) to show

fflu - uhf = \\u - uhf + l\uh - uhf. (4.12)

Using (4.12) in conjunction with the saturation assumption (4.3) shows

(1 - (32)\\u - uhf < \\uh - uhf < \\u - uhf, (4.13)

demonstrating Uh — Uh to be a good approximation to the error. However,
our goal is to show the easily computed function e^ also yields a good ap-
proximation of the error. This is shown next.

Theorem 1 Let M. = M. 0 W as above and assume (4.3) and Lemma 2
hold. Then

(1 - /32)(1 - 7
2) \\u - uhf < lehf < \lu - uhf. (4.14)
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Proof. The right inequality in (4.14) is a simple consequence of (4.10) for
the choice v = e/j. Now let u~h = u^ + e/j, where Uh G M, and e/j G W. Then,
using (4.9) with v = % — Uh and (4.11) with u = e^, we obtain

1% - uhl
2 = a(uh - uh, eh) = a(eh, eh). (4.15)

Combining this with (4.12), we get

Iti-u/J2 = \lu-uh\l
2 + a(eh,eh). (4.16)

To complete the proof, we must estimate | e ^ | in terms of ||e/J|. We apply
the strengthened Cauchy inequality (3.4) to obtain

IN - uhf > \\uh - uhf + ¥hf - 27 \\uh - uhl 1411
> (1-72) | | |4 | | | 2 . (4-17)

Combine this with (4.15) to obtain

(1-7 2 )P /J<IMI- (4-18)
Using(4.16) and (4.18), we have

Rearranging this inequality leads directly to the left-hand inequality in (4.14).

•
We note that computing eh in (4.4) requires the solution of a linear system

involving the matrix A22 in (4.6). This is a rather an expensive calculation,
given that typically the dimension of the space W is much larger than that of
M. Therefore it is of great interest to explore ways in which this calculation
can be made more efficient. In situations where Lemma 4 can be applied,
one possibility is to replace A22 by its diagonal D22 = diag^22- In finite
element notation, let d(-,-) be the bilinear form corresponding to Z?22- If
w = ^2j Wjifij G W, and z = J2j zj4>j £ VV, and {(pj} are the basis functions
used in Lemma 4, then

d(z,w) = 2^zjwja{<Pj,(t>j)-
j

We compute an approximation e-h G W satisfying

d(eh,v) = (f,v)-a(uh,v). (4.19)

In our proof of Theorem 1, we replace the orthogonality relations (4.10)-(4.11)
with

a(u-uh,v) = d(eh,v) for all v G W, (4.20)

a(uh-Uh,v) = d(ih,v) for all v G W. (4.21)
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Theorem 2 Let d(-,-) be defined as above, and assume Theorem 1 and
Lemma 4 hold. Then

Proof. One can follow the proof of Theorem 1 with small modifications to
show (4.22). However, we will take a more direct approach. From (4.10) and
(4.20), we have

d(eh,v) = a(eh,v)

for all v G W. Taking v = e-h and v = e^, and applying Lemma 4, we have

t4eh\f < \lehf < A||eh||
2.

Combining this with Theorem 1 proves (4.22). •

A second possibility for improving the efficiency of the computation of the a
posteriori error estimate is to use a nonconforming space VV of discontinuous
piecewise polynomials to approximate the error. We assume that W C W,
but VV (f. 7i. The advantage of this approach is that the resulting stiffness
matrix A22 is block diagonal, with each diagonal block corresponding to a
single element. Thus the error can be computed element by element, by
solving a small linear system for each triangle.

To analyse such an error estimator, we need to consider the effect of using
nonconforming elements. First, we consider the continuous problem. Let £
denote the set of interior edges of T. For each edge e € £, we denote a
fixed unit normal ne, chosen arbitrarily from the two possibilities. For w
discontinuous along e, let WA and wj denote the average and jump of w on e,
the sign of wj being chosen consistently with the choice of ne. Let v G H U VV
and u be the solution of (2.4). Then a straightforward calculation shows that

a(u,v) = (f,v)+g(u,v), (4.23)

where

g{u,v) = J2 [{aVutne}AvJ dx, (4.24)
ee£Je

and

a{u,v) = ^2a{u,v)t.

The error estimator e^ G VV based on this formulation is given by

a{eh, v) = (/, v) + g{uh, v) - a(uh,v) (4.25)

for all v G VV. Note that (4.25) consists of a collection of decoupled problems
having the appearance of local Neumann problems on each element; since the
space W cannot contain local constants, all problems must be nonsingular
and have unique solutions.
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To analyse this process, we note that the orthogonality conditions (4.10)-
(4.11) are now replaced by

a(u — Uh — eh, v) = g(u — Uh, v) for all v G\V, (4.26)

a(uh - u h - eh, v) = 0 for all v G W. (4.27)

Here Uh G M is still the conforming finite element approximation denned in
(4.1). The bilinear form g(-, •) does not appear in (4.27) since vj = 0 for
veW.

In examining the proof of Theorem 1, we note that the argument used
in proving the left inequality in (4.14) remains unchanged when applied to
HIê  HI. The difficulty arises only in the upper bound, where the choice v = e~h
in (4.26) leads to

le/tI2 < \\u - Uft| He/,I + \g(u - uh, eh)\.

Obtaining a bound for the nonconforming term is fairly technical and
lengthy, and we will only sketch the arguments here. The interested reader
is referred to Bank and Weiser (1985) for a more complete discussion. First
note that the presence of the nonconforming term demands more (local) reg-
ularity of the solution since line integrals of V(n — Uft)*ne appear. Here we
will make the simplifying assumption

h2
t\\V

2(u - uh)\\
2 < a2||u - uhf, (4.28)

teT

which essentially states that a standard a priori estimate for ||u — Uft| is sharp.
A more complicated form of the saturation assumption could be used in place
of (4.28).

Using standard trace inequalities edge by edge for e G £, we are led to the
estimate

\teT

See Brenner and Scott (1994) for a discussion of trace inequalities.
Now, using (4.28), and a slight generalization of Lemma 4,

i/HI? < K2\\w\\2 < u\iwft,

for all w G V\?t, we obtain the bound

\g(u - uh, e~ft)| < 6\\u - uhf | e , J ,

which yields our next result.
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Theorem 3 Let e~h € W satisfy (4.25). Assume (4.3), (4.28), and Lemmas
2 and 4. Then

(1 - (32)(1 - 7
2) \\u - uhf < l\eh\f < (1 + 6)2\\u - uhf, (4.29)

where (3 and 7 are as in Theorem 1 and 6 = 6(ao, (3Q, SQ, Vr, Wr).

We remark that one could make the diagonal approximation to the systems
of linear equations to be solved in computing e^. One would then have an
estimate modified as in Theorem 2. However, there is less advantage to
be gained in the current situation because A22 is already block diagonal with
diagonal blocks of small order. Another possibility is to use a different bilinear
form b(-, •) in place of a(-, •) on the left-hand side of (4.25). Such an algorithm
would calculate e^ 6 W such that

b(£h, v) = (/, v) + g(uh, v) - a(uh, v). (4.30)

One choice, suggested by Ainsworth and Oden (1992 and 1993), is to let
b(-,-) correspond to the Laplace operator —A. If there exist finite, positive
constants JJ, and p, such that

H\lw\f<b(w,w)<fl\lw 12

in analogy to (3.14), then the analysis of such approximations may be carried
out in a fashion similar to Theorem 2. Duran and Rodriguez (1992) and
Duran, Muschietti and Rodriguez (1991) analyse the asymptotic exactness
of error estimates of the type developed here, a topic we will not consider in
detail.

We now develop some examples of a posteriori error estimates for the space
of continuous piecewise linear polynomials. We let M. be the space of con-
tinuous piecewise quadratic polynomials, and W the space of quadratic bump
functions. The basis functions, denoted {V'i}) w^l ^ e the standard quadratic
nodal basis functions associated with edge midpoints for all edges of the
triangulation T. We first consider the estimate e^ denned in (4.19). Let

Let ipi be associated with an interior edge e of the triangulation and have
support in triangles t\ and t2, the two triangles sharing edge e. Then

£, (/, fpi)ti - a{uh, ipi)tl + (/, ipi)t2 - a(uh, ipi)t2

)t2

Here we see that the calculation of Ei involves only local computations. Stand-
ard element-by-element assembly techniques can be used to compute all the
relevant quantities.

We next consider the computation of e-h in (4.25). Let VV be the space of
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discontinuous piecewise quadratic bump functions. There are now two basis
functions associated with each interior edge, one with support in each element
sharing that edge, so the dimension of VV is approximately twice that of W.
However, at the level of a single element t, we have Wt = VV(. Let {?/>,} be
the basis for VV. Then the function Eh of (4.25) can be expressed as

eh =

Suppose rfti, ipj, and f/Jfc a r e the three discontinuous quadratic bump functions
having support in the element t G T. Then we must assemble and solve the
3 x 3 linear system

_ a(ipi,ipk)t a(ipj, [Ek J

(f,ipi)t-a(uh,ipi)t

. {f,il>k)t -a(uh,ipk)t .

As in the case of e^, only local computations are involved. All are com-
pletely standard except for the evaluation of the nonconforming terms. For
example, to evaluate giu^ipijt, we first note that i/Sj is nonzero on only one
edge of t, say edge e. Thus

-L dx,

where n is the outward normal for t. To evaluate the average, we must
compute aVuh for both t and the adjacent triangle sharing edge e.

5. Two-level iterative methods

In this section we analyse several two-level iterations for solving (2.6) (in
finite element notation) or, equivalently, (2.7) (in matrix notation). Much of
our development is based on Bank and Dupont (1980) and Bank, Dupont,
and Yserentant (1988). See also the books of Hackbusch (1985) and Bramble
(1993).

Let M. = V © VV, let A be the stiffness matrix computed using the hier-
archical basis, and partitioned according to (2.8), and let

A = L + D + L\ (5.1)

where

D =
0

0 and L =
0 0

0

We consider the following iteration for solving (2.6). Let UQ £ M. be given.
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We define the sequence uk = vk +
 wk > with »( .£V and wk £ W by

xeV, (5.2)

and

a(wk+l-wk,x) = uj{(f,x)-a(uk,x)} X G W. (5.3)

The iteration (5.2)-(5.3) can be written in matrix notation as

D{xk+i - xk) = u{F - Axk}, (5.4)

where the vector xk G RN corresponds to the finite element function uk G M..
Equations (5.2)-(5.4) represent a standard block Jacobi iteration for solving
(2.6)-(2.7). Although we have written (5.4) as a stationary iteration, practic-
ally we expect to use D as a preconditioner in the conjugate gradient proced-
ure. We refer the interested reader to Golub and Van Loan (1983) or Golub
and O'Leary (1989) for a complete discussion of the preconditioned conjugate
gradient algorithm. Here we analyse the generalized condition number of the
preconditioned system.

Theorem 4 Let A = L + D + Ltas denned above. Then for all i ^ O ,

i

1 + 7 ~ xl Ax ~ 1 - 7 '

where 0 < 7 < 1 is given in Lemma 2.

Proof. It is easiest to analyse (5.5) using finite element notation. Let u =
v + w, with v G V and w G W, correspond to 2 G M^. Then

x*Ax = | t t | 2 and xlDx = \v\2 + \w\2.

Now

Applying Lemma 2, we have

(1 - 7XIHII2 + IHI2) < IN!2 < (i + 7XIHII2 + IIHI2),
proving (5.5). •

The generalized condition number K is given by

1 - 7

The optimum value for u> for the stationary iteration (5.4) is u> = 1, and the
rate of convergence is given by

J C - 1 _
/C + l ~ 7 '
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See Dupont, Kendall and Rachford (1968) for an analysis of the stationary
method.

If conjugate gradient acceleration is used, the estimate for the rate of con-
vergence is bounded by

" -1 7

We note that (5.4) requires the solution of linear systems involving the di-
agonal blocks An and A22 in each iteration. We next show that the systems
involving A22 can be effectively solved using an inner iteration. Those in-
volving An should either be solved directly, or solved recursively, using a
multilevel iteration.

Let A22 be a symmetric, positive definite preconditioner for A22, and sup-
pose we approximately solve the linear system A22X = b, using m > 1 steps
of the iterative process

- xk) = b - A22Xk. (5.6)

The iteration (5.6) should not be accelerated, but should be implemented as
a stationary iteration to allow the use of conjugate gradient acceleration for
the overall (outer) iteration. We assume that any fixed parameters for (5.6)
have been already incorporated in the definition of ̂ 4.22 • Let

G = I — A22 A22 A22 •

We assume G is symmetric with

\\G\\t, = P < 1. (5.7)

Let

Rm = Gm(I-Gm)-1. (5.8)

The eigenvalues of Rm lie on the interval

when m is even or if all eigenvalues of G are nonnegative. In the latter case,
G is sometimes called a smoother. If G is not a smoother and m is odd, we
must use the weaker bound

m m
" < A < — . (5.10)

~ ~ 1 pm
A .

pm ~ ~ 1 - pm

An induction argument shows the m-step process in (5.6) is mathematically
equivalent to the solution of

A\i2{I + Rm)A1
2

/
2

2xm = b + A^RmA^xo. (5.11)
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In our current situation, the initial guess XQ = 0, simplifying the right-hand
side of (5.11). Our overall preconditioner, using m inner iterations, is thus

0 0
= D+ 0 A1'"

Theorem 5 Let A = L + D + Ll and D be denned as above. Then for all

1 < xiJx^ 1
pm) ~ x%Ax ~ (1 - 7)(1 - p

Proof. As in the proof of Theorem 4, we let u = v + w € M correspond to
x £ RN. Then

\\vf + (i + p"1)-1!^!2 < xlbx < |u||2 + (i - p^-^iwf.

Thus
i xlbx i

- pm'
and the theorem follows from Theorem 4 and

n
The generalized condition number K, is bounded by

- 7
Here we see that the use of inner iterations has only a modest effect on the
generalized condition number, provided that p is small or m is large. We re-
mark that by bounding xtDx/xtAx directly, instead of bounding xtDx/xtDx
and xtDx/xtAx separately, one can achieve a somewhat smaller but more
complicated bound for JC. If G is a smoother, then the bound on K can be
improved to

We now consider the symmetric block Gauss-Seidel iteration

{D + L)(xk+1/2 - xk) = F-Axk (5.14)

In finite element notation, we may write (5.14) as
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for x G V,
a(vk+l/2 + wk+i,x) = (f, x) (5-16)

for x € W, and

a(vk+x + wk+i,x) = (/, X) (5-17)

for x € V. A careful analysis of (5.15)-(5.17) will show that block Gauss-
Seidel and block symmetric Gauss-Seidel are equivalent as stationary iterative
methods (that is, Vfc+i/2 = vk), but this is no longer true when symmetric
Gauss-Seidel is used as a preconditioner for the conjugate gradient algorithm.

Let ek = x — xk. Then from (5.14),

efc+i/2 = {I-(D + L)-1A}ek,

efc+i = {I-(D + L)-tA}ek+1/2,

from which it follows that

= {I- [{D + L)-* + (D + L)~l]A + (D + Lr'AiD + L)~lA}ek

= {I-(D + L)-\L + 2D + L1- A)(D + L)'lA}ek

= {I-B~lA}ek, (5.18)

where

B = (D + L)D~l{D + Lt) = A + LD^LK (5.19)

Once again, our task is to determine the generalized condition number by
estimating the Rayleigh quotient.

Theorem 6 Let A = L + D + L* as defined above, and let B be given by
(5.19). Then

where 0 < 7 < 1 is given in Lemma 2.

Proof. Since LD~lLt is symmetric, positive semidefinite, it is clear from
(5.19) that the lower bound is one. The upper bound is given by 1 + /z where

xLDWx
a = max — . (5.21)

z^o xtAx

This can be written as
y'Dy

~ max

where

= Llx.
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In finite element notation, this becomes

where u = v + w, v £V, u> 6 W and v G V satisfies

a(v,X) = a(w,x) (5.23)

for all x G V. Written in finite element language, (5.22)-(5.23) is easy to
analyse in terms of the strengthened Cauchy inequality. We take x = v m

(5.23) to see

H<7l4

On the other hand

INI2 = N|2 + H | 2 + 2a(v,to)
> N«2 + IHIi2 ~ 27 INI Nil

The theorem now follows from combining this estimate and (5.22). •

The analysis of the block symmetric Gauss-Seidel scheme with inner iter-
ations is a little more complicated. We formally consider the iteration

(D + L)(xk+1/2 - xk) = F - Axk,

(D + L*)(xk+1 - xk+1/2) = F-Axk+1/2, (5.24)

where D is given in (5.12). A calculation similar to (5.18) shows that

efc+1 = {I-iD + L

= {I - [{D + L)-* + (£> + L)~l}A + {£> + L)-*A(£) + L)~xA}ek

= {I-(D + L)~\L + 2D + L*- A){t) + L)~1A}ek

= {I-B-xA}ek, (5.25)

where

B = (D + L){2D-D)-1(D + L)t

= A+iD-D + L^D-D^iD-D + L)1

1L* + ^. (5.26)



28

Here

A =

and Rm is denned in (5.8).
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0

0

0

0
,1/2

Theorem 7 Let A =
(5.26). Then

i

Ltas denned above, and let B be given by

where 0 < 7 < 1 is given in Lemma 2, and p is given in (5.7).

Proof. Since LD 1/ + A is symmetric, positive semidefinite, the lower
bound is one. For the upper bound, xtLD~^Ltx/xtAx was estimated in the
proof of Theorem 6. Let u = v + w £ M. correspond to x G R^. Then, using
(5.7)-(5.8) and Lemma 2, we have

n2m |kf
x /ix yi — p ) \u\

Combining these estimates, we have

l-p2m V l - 7 2

xlBx
xlAx < 1 7

I - 7 2 I - 7
D

We now consider some possibilities for the inner iterations. One obvious
choice is a Jacobi method based on the diagonal matrix D22 — diagyl22 with
A22 = D22/U. Using Lemma 4, for the choice u> = 2/(/x + //), we have

P<
K- 1
K + l '

where K =
A second possibility is to use a symmetric Gauss-Seidel iteration. Let

^22 = -̂ 22 + -D22 + L22, where L22 is lower triangular. We then take

A22 = (D22 + + L22) (5.28)

Lemma 5 Suppose the hypotheses of Lemma 4 hold, and let A22 be given
by (5.28). Then there exists a finite positive constant r\ depending only on
ao, Po, and 60, such that

< 1 + ̂ 7- (5.29)
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Proof. As usual, the lower bound is one, since A22 = ^22 + -^22^22 ^2
L22D22 -̂ 22 is symmetric and positive semidefinite. Now

where

In finite element notation,

''/

this

'/

— max—r

D22JJ = L

is

W

A '

22^-

,i,lll 2

where w € W corresponds to y, w; G W corresponds to x, and {0j} are the
basis functions for W. Since the basis functions for W are developed from
a fixed set of functions denned on the reference element, the support of a
given basis function can intersect that of only a small number of other basis
functions (there are at most a fixed number of nonzeros in any row of L22,
independent of the number of elements in the mesh). Therefore we must have

3 3

where C = C(6Q). The result now follows directly from Lemma 4. •

Using Lemma 5, we can estimate

Thus we see that although these inner iterations perturb the rate of conver-
gence, they do not affect the essential feature that the rate depends only on
local properties of the finite element spaces, and is independent of such things
as the dimension of the space, uniformity or nonuniformity of the mesh, and
regularity of the solution.

6. Multilevel Cauchy inequalities

In this section we will develop several strengthened Cauchy inequalities of use
in analysing hierarchical basis iterations with more than two levels. These
estimates are developed for the special case of continuous piecewise linear
finite elements; they can be combined with the two-level analysis of Section 5
to develop multilevel algorithms for higher-degree polynomial spaces. We will
return to this point in Section 7. Much of the material here is based on Bank
and Dupont (1979), Yserentant (1986), and Bank, Dupont and Yserentant
(1988). See also the books of Hackbusch (1985), Bramble (1993), and Oswald
(1994).
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Let 7i be a coarse, shape regular triangulation of Q. We will inductively
construct a sequence of uniformly refined triangulations Tj, 2 < j < k,
as follows. For each triangle t € Tj-i, we will construct 4 triangles in Tj
by pairwise connecting the midpoints of t. All triangulations will be shape
regular, as every triangle t € Tj will be geometrically similar to the triangle
in To which contains it. We could also allow nonuniform refinements that
control shape regularity, for example those of the type used in the adaptive
finite element program PLTMG (Bank 1994). See also Rude (1993) and
Deuflhard, Leinen and Yserentant (1989).

With this definition, it is easy to introduce the notion of the level of a given
vertex in the triangulation Tj. All vertices in the original triangulation T\ are
called level-1 vertices. The new vertices created in forming Tj from Tj-\ are
called level-j vertices. Notice that all vertices in Tj have a level less than or
equal to j . Also note that each vertex has a unique level, and this unique
level is the same in all triangulations that contain it.

Let M j be the space of continuous piecewise linear polynomials associated
with Tj. Functions in Mj will be represented using the hierarchical basis,
which is easily constructed in an inductive fashion. Let {4>i\i=i denote the
usual nodal basis functions for the space Mi', this is also the hierarchical
basis for Mi- To construct the hierarchical basis for Mj, j > 1, we take

the union of the hierarchical basis for Mj-i, {^Ij-fj"1, with the nodal basis

functions associated with the newly introduced level j vertices, {4>i}^J.^ +i-

Let Vj be the subspace spanned by the basis functions associated with the

level-j vertices, {4>i}^J.^ + i , where iVo = 0. Note that Vi = Mi- Then we

can write for j > 1,

Mj = Mj-x © Vj = Vi e v2 e . . . e v,-.

Let J\fj, 1 < j < k — 1 be defined by

Mj = Vj+i © Vj+2 0 . . . 0 Vfc

with Mk = 0- Then we have the decompositions

Mk = Mj © Mj

for 1 < j < k.
Before proceeding to the Cauchy inequalities, we need a preliminary tech-

nical result.

Lemma 6 Let t £ S, where S is defined as in Section 3. Let T' be a shape
regular triangulation of t, whose elements have a minimum diameter of h.
Let M! be the space of continuous piecewise linear polynomials associated
with T. Then there exists a constant c = C(6Q), independent of h, such that,
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for all v £ M',

Nloo^cliog/ii1/*!!^. (6.1)

Proof. Here we will only sketch a proof, following ideas in Bank and Scott
(1989), but see Yserentant (1986) for a more detailed, but also more ele-
mentary proof. We remark that estimate (6.1) is restricted to two space
dimensions.

Our proof is based on an inverse inequality, and the Sobolev inequality; see
Brenner and Scott (1994) or Ciarlet (1980) for a general discussion of these
topics. Let t' be a shape regular triangle of size ht>, and let v be a linear
polynomial. The inverse inequality we require states

— ^/P11

I
for 1 < p < oo. Let D be a closed bounded region with a piecewise smooth
boundary; then the Sobolev inequality we need states

\\V\\CP(D) <

for all v E Hl{D) and all p < oo. Now let t € S and v € M'; then

= max |M|£°o(t')

< C0/T2 / p max

The proof is now completed by taking p « —4 log h. D

Lemma 7 Let Mk = Mj © Nj as above. Then there exist positive con-
stants 7j, 1 < j ' < k — 1 such that

1i < 1 " ^ - , (6-2)

and the strengthened Cauchy inequality

M (6-3)

holds for v € M.j and w € J\fj. The positive constant c in (6.2) is independent
of j and A;.

Proof. Our proof is based on that of Bank and Dupont (1979). Following
the pattern used in proving Lemma 2, we first reduce the estimate (6.3) to
an elementwise estimate for t € Tj. If we show

Hv,w)t\<-rj,tMtMu (6-4)



32 R. E. BANK

then

7,- = max7,( .

Let t £ Tj, and let Xi, 1 < i < 3 denote the three vertices of t. We map t
to a triangle £ 6 S using the change of variable

x —
x = ~~h

As in the proof of Lemma 2, this verifies that 7J)t is independent of hf. Notice
that Aijj, the restriction of Aij to t, is just the space of linear polynomials
on t and has dimension three. In the case of uniform refinement, the space
Mjtt is the space of piecewise linear polynomials on a uniform grid of 4fe~:;

congruent triangles, which are zero at the three vertices of t. The (local)
constant function is thus contained in Mj,t, and M.j,t ©A/},* is just the space
of continuous piecewise linear polynomials on t.

Let v € Mjj and w € Mjtt- Then

= max a(v,w)t

m a x

max 1 — c\\v — w\\11
= | u ; | = l '

where c = c(ao, 0Q).
We now apply Lemma 6, noting that h ~ 2fc~-7 for the triangulation of i.

, C\\v-w\\^t
7,-1 < max 1

h | « | M i

where C = C(ao,Po,So).
Next we note that, since v is just a linear polynomial on £ with |i>||t = 1,

and w(xi) = 0, 1 < i < 3, we have a fixed constant c7 > 0, independent of j
and k, such that

c' < max |V(XJ)| = max \v(x{) — w(x{)\ < \\v — to||oo,t-
Xi Xi

Thus it follows that

Cc'

and the lemma follows. •

We next describe the result of Lemma 7 in terms of interpolation operators.
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Lemma 8 Let u = Vj + Wj € A4k, Vj £ Mj and Wj E Mj. Define the
interpolation operator Zj, mapping A4k to A4j, by Zj(u) = Vj. Then

I P » | < Cv^^jltil. (6.5)

The positive constant C is independent of j and k.

Proof. Apply Lemmas 3 and 7. See also Yserentant (1986), and Bank,
Dupont and Yserentant (1988). •

We finish this section with

Lemma 9 Let Vj and Vj for 1 < i,j < k be defined as above. Then there
exist positive constants Fj j satisfying

(6.6)

such that

|a(i>,u;)| < r i j | w | I to I (6-7)

for all v E V\ and w E Vj. The constant c in (6.6) is independent of i and j .

Proof. Our proof is similar to that given by Yserentant (1986). Without
loss of generality, suppose i < j . We need consider no triangulation finer
than Tj, since subsequent refinements do not affect either v or w. As in the
other Cauchy inequalities, one first reduces the estimate to a single element
t €%, that is

\a(v,w)t\<ritJ!t\lv\\t\lw\lt. (6.8)

We then consider the gradient terms and the lower order terms separately as
in (3.6)-(3.7). For the highest order term, we must again consider the special
importance of the (local) constant function, which in this case belongs to Vitt-
Following the pattern in the proof of Lemma 2, we next map t E % to an
element t € S by scaling and translation, showing that the estimate must be
independent of fit- Also note that under this mapping, triangles in Tj become
triangles with size h s=s 21"-7'.

The central estimate is to show that

where

a(v,w)-,f = / dVtj'Vw dx
Ji
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We will also use the norms

= / v2 dx and lull2 - /' "at ~m Jd
= I v dx.

dt

The function "0 is just a linear polynomial on t, while il> is a piecewise linear
polynomial vanishing at all the vertices with level smaller than j . Such a
function is necessarily very oscillatory, and for such a function the differential
operator behaves very much like h~l times the identity operator. In particular,
we have the estimates

and

(6.10)

(6.11)

where C = C{OLQ, SQ).

Now, using integration by parts, the fact that Av = 0 in i, and (6.10)-(6.11)
we have

a(v,w)1f = / — Va*VM> dx + / aV
Ji Jdt

ds

The lower order term is easy to treat in this case because of (6.10). •

7. Multilevel iterative methods

In this section, we will analyse block Jacobi and block symmetric Gauss-
Seidel iterations using the hierarchical decomposition

Mk = Vi e v2 e . . . © vfc

defined in Section 6. Much of this material comes from Bank, Dupont and
Yserentant (1988), but see also Bramble (1993), Bramble, Pasciak, and Xu
(1990), Bramble, Pasciak, Wang, and Xu (1991), Griebel (1994), Hackbusch
(1985), Ong (1989), Xu (1989) and (1992), and Yserentant (1986) and (1992).

As before, we let {4>i}iJ-pf. + 1 denote piecewise linear nodal basis functions
for the level-j vertices in 7^. Then the stiffness matrix A can be expressed
as the symmetric, positive definite block k X k matrix

A =

A
n 12

(7.1)

where Ajj is the (Nj — Nj-i) x (Nj — Nj-i) matrix of energy inner products
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involving just the level-j basis functions. In similar fashion to the analysis in
Section 5, we set

A = L + D + L\ (7.2)

where

i l l

A22
and L =

. A k l A k 2 ••• 0 .

We first consider the block Jacobi iteration. Let UQ G Aik be given. We
define the sequence

where Vjj 6 Vj, 1 < j < k. In finite element notation, the block Jacobi
iteration is written

, X) - a(ui, (7-3)

for X *= V^ 1 — j ' ^ k- The iteration (7.3) can be written in matrix notation
as

D(xi+1-Xi) = u}{F-Axi}, (7.4)

where the vector X\ G M.Nk corresponds to the finite element function U{ € Mk-
To estimate the rate of convergence, we must bound the Rayleigh quotient

xlDx
0< A< xlAx < A

for i / O . In finite element notation, this is written

where vt 6 Vi and v = J2i=i vi ¥" °-
For any v = v\ + vi + . . . + vk, we define

for 1 < j < k, with ZQ = 0,

Wj =

V2 + • • • +Vj,

Vj+2

(7.5)

(7.6)

(7.7)

(7.8)

for 0 < j < k — 1, with wk = 0. Thus we have v = Zj + Wj, 0 < j < k. Note
Zj 6 Mj, while Wj € Mj •

We begin our analysis with an upper bound for (7.6). First note that the
angle between the spaces Vi © V2 © . •. © Vj_i = Mj-i and Vj is just the
angle between the spaces V and W of Lemma 2. Therefore the constant in
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the strengthened Cauchy inequality for these spaces, which we will denote by
7, does not depend on j . Now

INI2 = \lzJ-l + vjf

> (i-72)IKI2-
We now use Lemma 7 to deduce

|H|2 = jZj+Wjf

= I Zj 12 + 1 Wj 12 + 2a(zj, Wj)

> Ill^ll2 + IK I 2 -^ INI I I IK I I
> (i-72)INII2

> (1-^2)(1-72)III^I2-
Thus we have

To find a lower bound, we note that

where £̂ i = | v i | , and F is the k X k matrix introduced in Lemma 9. One can
easily see that ||r||£2 < C, so that

1=1 1=1

Thus we have proved the following result.

Theorem 8 Let A = L + D + 1} as denned above. Then

Ci < ^ < C2A;2, (7.9)

where Q = Ci(ao,/30,60), i = 1,2.

Note that the generalized condition number K. < ck2 now depends on the
number of levels. For the case of uniform refinement, k = O(logiVfc), so
this introduces a logarithmic-like term into the convergence rate. Note that
VX < ck, so that conjugate gradient acceleration can be expected to have a
more significant impact on the fc-level iteration than on the two-level method.

As in the case of the two-level iteration, we may solve linear systems of the
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form Aax = b by an inner iteration for all i > 1. Following the development
given in Section 5, let An be the preconditioner for An and let Gi — I —
A^A^Ali2. Suppose

l l l l ^ =p<\,

and assume for simplicity that m > 1 inner iterations are used for a l i i > 1.
Let Ri^ = G™(I — G™)"1. Then, using reasoning similar to that of (5.12),
we replace (7.4) with

where

D(xi+i - x^ = u{F -

0

(7.10)

D = D + D1'2
R2,m

D1'2 = D + Z.

Theorem 9 Let A = L + D + L* and D be denned as above. Then

xfAx - p
v ' '

where Q , i = 1,2 are given in Theorem 8.

Proof. Following the proof of Theorem 5, we see for all x ^ 0,

1 xlt)x 1
xWx - p

The theorem then follows easily from this estimate and Theorem 8. •

We next consider the symmetric block Gauss-Seidel iteration. In finite
element notation, we may write this as

a(Vj,i+i/2 ~ vjti,x) = (/, X) - a(Zj-i,

for x G Vj, j = 1, 2 , . . . , k, and

, x) = (/, X) - a(zj,

j-i,i, X)

j,i+i, X)

(7-12)

for x € Vj, j = k,k — 1 , . . . , 1. Here Zjti and Wjti are defined analogously to
Vj and Wj in (7.7)-(7.8). In matrix notation the iteration is written

(D + L)(xi+l/2 - Xi) = F-Axi,

(D + L*)(xi +i-x i +i / 2) = F-Axi+i/2.

As in the two-level scheme, the preconditioner B is given by

B = (D + L)D-\D + Lt) = A

(7.14)

(7.15)
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Theorem 10 Let A = L + D + L* and B be denned as above. Then

where

H<C3k
2, Cs = C3(aQ,Po,6o). (7.17)

Proof. The lower bound is clear since LD~lLl is symmetric and positive
semidefinite. For the upper bound, we estimate

V*Dy
U = m a x —7——

where

Dy = Llx.

Let v = V1+V2 + • • - + Vk = Zj+Wj, with Uj G Vj and Zj G A^j and Wj G A/}
as in (7.7)-(7.8). Then in finite element notation, we have

v P ^ - , (7.18)
where

(7.19)

for all x € Vj.
Taking x = Vj in (7.19) and applying Lemma 7, we have

1 Will < Tillkil,
and

Thus we have

n
We next analyse the effect of inner iterations on the symmetric block Gauss-

Seidel iteration. Thus we replace D with D in (7.14) and obtain the iteration

(D + L)(xi+1/2 - Xi) = F-Axi (7.20)

{D + L )(xi+i — xi+1/2) = F — Axi+i/2
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Following arguments similar to (5.26), we have

B = (D + L^D-Dy^D + L1)

D)-l{D-b + Lt) (7.21)
2Z)~1(Lt -Z).

As usual, we need to estimate the Rayleigh quotient xtBx/xtAx. Since
(L — Z)(D + 2Z)~1(Lt — Z) is symmetric, positive semidefinite, the lower
bound is just 1. To obtain an upper bound, the essential estimate we must
make is

x\L - Z)(D + 2Z)~1(Lt - Z)x
a = max xtAx

D

+ \\{D

Now

and
J2m

- 1-p 2 ™'

The norms \\D~1/2LtA~1^2\\p and H D 1 / 2 ^ 1 / 2 ^ are estimated using The-
orems 10 and 8, respectively, and we now combine these estimates.

Theorem 11 Let A = L + D + P and B be defined as above. Then

xlBx
1 < < 1 + A> (7.22)

where

n2m
(7.23)

and C2 and C3 are given in Theorems 8 and 10, respectively.

If G is a smoother, then using (5.9) we have ||(D + 2Z)~l/2Dl/2\\p < 1,
and the improved estimate

2

We conclude with several remarks about the two-level and fc-level methods.
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Although the fc-level method was developed for only the case of continuous
piecewise linear polynomials, this is sufficient to construct efficient methods
for higher-degree spaces. For example, we consider the case of continuous
piecewise quadratic polynomials on a sequence of meshes 7j, 1 < j < k. At
first glance, one might be tempted to try to develop a method in which one
used piecewise quadratic spaces on all levels. Further reflection would lead
one to the conclusion that such a method could potentially be very complic-
ated, as it is not clear that there is a simple way to develop a hierarchical
basis. It is also not clear that the analysis of such a method could be based
on the results in this work.

On the other hand, we could begin by making the usual two-level decom-
position M. = V© W, where V is the space of piecewise linear polynomials on
Tfc and W is the space of piecewise quadratic bump functions that are zero at
the vertices of Tfc. The dimension of W is then approximately 3N/4 where N
is the dimension of M.. For the space V, which is just the space of piecewise
linear polynomials on 7^, we can make the hierarchical decomposition

v = Vi © v2 © . . . e Vfc

as described here. Overall, we have the hierarchical decomposition

M = Vi © V2 © • • • © Vfc © W.

Based on this decomposition, there is an obvious multilevel hierarchical basis
iteration that can be developed. This iteration could be viewed as a two-level
iteration, with an elaborate A;-level inner iteration used to solve the linear
systems associated with the space V. Alternatively, this iteration could be
viewed as a fc + 1-level iteration, in which the the first k levels are the standard
ones, but level k + 1 is special, in that the degree of approximation is increased
instead of the mesh being refined. For either viewpoint, the algorithm is the
same, and its analysis is straightforward using the results in Sections 3-7.

Another possibility along these lines is to make some further hierarchical
decomposition of the space W. For example, suppose now that M is the
space of continuous piecewise quartic polynomials on Tfc. We can begin by
making a decomposition M. = V © W, where V is the space of continuous
piecewise linear polynomials and W is the space of quartic polynomials that
are zero at the vertices of 7^. We make a further decomposition of V as in the
previous example. We can also conveniently make the further decomposition
W = W2 © W4, where W2 is the space of continuous piecewise quadratic
polynomials that are zero at the vertices of Tfc. This is the same as the
space W in our last example. The space W4 is now the space of continuous
piecewise quartic polynomials that are zero at the vertices and edge midpoints
of Tfc (that is, all the nodes associated with the piecewise linear and piecewise
quadratic spaces). This space can be characterized in terms of a subset
of the standard nodal basis functions for the piecewise quartic space, the
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bump functions associated with the 1/4 and 3/4 points on each edge, and the
bubble functions associated with the barycentric coordinates (1/4,1/4,1/2),
(1/4,1/2,1/4), and (1/2,1/4,1/4) in each element. This leads to an overall
decomposition

M = Vi © V2 © • • • © Vfc © VV2 © W4.

The resulting hierarchical basis iteration could then be viewed as a basic two-
level iteration in which elaborate inner iterations are used for solving linear
systems associated with both the V and VV spaces, or as a k + 2-level scheme
in which the last two levels involve an increase in degree of approximation
rather than a refinement of the mesh.
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